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Our Approach

We introduce biology, we treat the established theories, we make concrete examples, and finally we do

exercises

In the lecture for each block, address
* Scope
* Approaches

* Applications

In the practical part
*  Computational thinking

* Applied modelling, simulation and analysis
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We learn by doing: tutorials and exercises.

 In tutorials, you will find examples and exercises.

» They are part of the course and show implementations of the theory shown

at lectures.

* Spend time on them and you will have a deeper understanding of the

lectures
« Some of the questions in the tests are inspired by the tutorials/exercises
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 All the supporting material (lecture slides, python notebooks, papers,
recorded lectures) will be posted on MOODLE before the lecture:

https://moodle.epfl.ch/course/view.php?id=17101

« Execution of tutorial python notebooks happens online under:

https://noto.epfl.ch

(but if you really want, you can download the tutorials and necessary software locally but at your own risk)

m
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* Three tests during the course

« Each test covers different lectures:

» Test 1: lectures 2-5

» Test 2: lectures 7-9

» Test 3: lecture 10-12

» For each week, you will have three questions:
» Multiple-choice question

» Open question

» More practical question inspired by tutorials and exercises

CEPFL
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1. Brain as a complex system
2. A forest of approaches
« Course approach

3. Build a computer model

CEPFL
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Brain as a complex system

Reductionism vs. complex systems

Many elements on many different scales with all of
these scales affecting each others (interdependency)

We cannot fully isolate one component or reduce the
whole system to one level

Emergent properties

Non linearity, feedback loops, phase transition,
sensitivity to initial condition (butterfly effect)

Other complex systems are society, economy,
ecosystem
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Clinical

Cognition

Whole brain
Macrocircuits
Mesocircuits

Microcircuits

Synapses

Neurons
Molecules
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Example: Microcircuit plasticity, a synaptic correlate of learning
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Non-linearity

In simple IF models, subthreshold synaptic

inputs can be linear i

s 1 |
Spike generation introduces a non-linearity in .
the model g

Q

q:) —
Other examples of non-linearity in more é .
complex models are ion channels, synaptic g .
integration in the dendrites...

N L [P ) [ L a fE
1 2 3 4 5
Time (msec)

http://www.vce.bioninja.com.au/aos-2-detecting-and-respond/coordination--

F requlation/nervous-system.htmi
- P F |

16


http://www.vce.bioninja.com.au/aos-2-detecting-and-respond/coordination--regulation/nervous-system.html
http://www.vce.bioninja.com.au/aos-2-detecting-and-respond/coordination--regulation/nervous-system.html

AT LERA
W | |
i il

4 1 ] 1 I I ¥
as | (b) SI, _
.a ast osc
] RENEY TR TYYRTRIRERTR YYRYRY 25 SR 00
s HWW Zezt L) @ © 3 s
U%w I .szu 540 _;‘ﬁn ‘-I.f:an .i Uthr 15 k= AI - o . tlfﬁa] e
o | { @ 1
AR 05—. .................... B’%:pt /}1.
) SI, slow osc]
0 1 [ [ ] | i L

0o 1 2 3 4 5 6 7 8
g

Figure7. Phase diagram ofthe network characterized by the param-
eters of Fig. 8 (Cg = 1000, C; = 250, J = 0.1 mV, D = 1.5 ms).
Diamonds indicate the parameter sets chosen for the simmlations

shown in Fig. 8.
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1. Brain as a complex system
2. A forest of approaches
« Course approach

3. Build a computer model
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| Mean-field models

Point-neurons
Multi-compartment models

Reaction-diffusion models

Molecular dynamics
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Bottom-up vs. Top-tdown approaches
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Biophysical vs. Phenomenological model

Biophysical Models

« Employ the mathematical formalizations of the physical
properties of that system

* Promise of generalization

Phenomenological models

« Postulated mathematical form, not derived from first principles
« May be qualitative or quantitative description of data

« Limited predictive power, but better at higher scales

« Eventually required to avoid turtles all the way down...
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Data- vs. Hypothesis-tdriven model

CEPFL

Data-driven model
Data

|

Model

|

Test multiple
hypotheses

More ambitious
Find new relationships

Hypothesis

|

Minimum model

Accept or reject
the hypothesis

More pragmatic
Exclude important
elements

» Hypothesis-driven model
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1. Brain as a complex system
2. A forest of approaches
« Course approach

3. Build a computer model

CEPFL

23



The approach followed by the course

« Consider different scales, using a bottom-up approach from ion channels to
large-scale network

« Biophysical models

« Data-driven approach

* Multi-compartment models of neurons

* Lower-scale phenomena are captured with phenomenological models
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» A principle used in computer science and when the problem is particularly
complicated
« This principle is also useful in the case of computational neuroscience

« QOur ultimate objective is to reconstruct the entire brain and we can divide it

into components

Morphology
(lecture 3)
Neuron
(lectures 5-6) lon channel
(lecture 4) Transversal lectures:
Region 1,2,13, 14

Brain

(lectures 10-12)

Anatomical connection

(lecture 7)
Synapse
Functional synapse

E P F L (lecture 8-9) ’s




Still ayoung science

.

Not all the topics treated in the course are well established in the community.

Some approaches have been characterized in depth, the theory is relatively
consolidated, there are books (e.g. ion channels, point neurons).

For other topics (e.g. models of brain regions), the community is still in an exploratory
phase. We have to rely on scattered papers, the skills of your colleagues... There are no
rigorous definitions, procedures... There is a variety of solutions to the same problem.
Computational neuroscience is a multidisciplinary field and evolve with the progresses of
many other disciplines. For example, it depends on the power of moderns computers
and computer architectures.

Our knowledge is still quite fragmented due to a variety of reasons.

The course tries to organize this knowledge and present it in a pedagogic way

PFL
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1. Brain as a complex system
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« Course approach

3. Build a computer model
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“What | cannot create, | do not understand”
- Richard P. Feynman

‘v‘,\j l"l.'-l /{ f) (:Wv‘\/ﬁ @) U[{ja )

) ks et mAonitinel. [reeme

'B;;)u; AWuZB [ods <
T .1 7
Mﬁh JL{CM AV e R :

() L= e

? :‘.{)‘ %} w2 ;
_d————‘—"—"—m
(B =1V a| s

P /\\
E P F LNobel Prize in Physics 1965 © Copyright California Institute of Technology. All :'ights reserved.

Commercial use or modification of this material is prohibited.

28



I(t)
. System
TI(t) Conceptual model
/ _L " N\
‘ RD (; Il(f) v
rest T | Mathematical model

Computational model

m
T
1
r

I®)=1Ir+Ic .

|_t

# ...

LR +1_C

29



m
1

System

Conceptual model

Mathematical model —_—
l Verification

Computational model /
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Verification

Check that the computer simulation correctly
implements the mathematical model

Approaches for verification:

» Code review by your peers

 Interactive debugger

« Check simulation output for cases where output is known by

other means (analytical derivation)

Richard P. Feynman

« Software engineering techniques for software verification,

such as unit testing
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System
A:eptual model

Validation

Mathematical model —_—
l Verification

Computational model /
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Check that the model accurately captures the
system being modeled

« Validation does not prove a model right!

« Compare to experimental data not used to constrain the

model

* Models have a domain of validity, or applicability

* Models may generalize beyond their established domain

of validity

* Make a prediction, and test it experimentally

=PrL .



Sub-threshold stimulus
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Figure7. Phase diagram ofthe network characterized by the param-
eters of Fig. 8 (Cg = 1000, C; = 250, J = 0.1 mV, D = 1.5 ms).
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What you have learn

« Brain is a complex system. It spans multiple scales in time and space, it
shows non-linearity, emergent properties. Interdependency of the system
elements.

« There are multiple approaches to model the brain: bottom-up and top-down,
biophysical and phenomenological, hypothesis- and data-drive.

« Building a model requires several steps: conceptual model, mathematical

model, computer model, verification, and validation

m
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